Exam Physics Laboratory 1: Data and error analysis 30 October 2013

This exam consists of **5 exercises** on 2 pages. Make each exercise on a separate sheet of paper! Write your name and student number on each sheet of paper! Write clearly, using a pen (not a pencil).

Exercise 1 (4 points)

Rewrite the following results, using the correct notation:

a)
$$v = 2.71828 \text{ m/s} \pm 2 \text{ mm/s}$$

- b) $L = 3.14 \text{ km} \pm 1.5 \text{ cm}$
- c) $C = 4722 \ \mu F \pm 0.42 \ mF$
- d) $R = 68 \text{ M}\Omega \pm 22 \text{ k}\Omega$

Exercise 2 (5 points)

A resistor with resistance R carries a current I. The power P dissipated as heat by the resistor is given by $P = I^2 R$. A resistor with $R = 330 \Omega$ is used, the accuracy of R is listed by the factory as 5%. The current is measured: $I = 0.28 \pm 0.01$ A.

Calculate the relative and absolute error in the power P and write the final result $P = \dots \pm \dots$ in the correct notation.

Exercise 3 (5 points)

Two independent measurements of the length L of a wire yield: $L_1 = 16.4 \pm 0.5$ m and $L_2 = 16.1 \pm 0.2$ m.

Calculate the weighted average length L and the error in L.

Exercise 4 (10 points)

The resistance R of an electrical circuit is measured 6 times, with the following results: $R = 47.1 \ \Omega, 47.4 \ \Omega, 47.8 \ \Omega, 46.9 \ \Omega, 47.2 \ \Omega, 47.5 \ \Omega.$

It is clear that the random error in R is much larger than the $\pm 0.1 \ \Omega$ error of the measurement instrument.

- a) Calculate the best estimate for the resistance of the circuit.
- b) Calculate the best estimate for the standard deviation σ .
- c) Calculate the error in the best estimate for the resistance calculated in part a).
- d) How many extra measurements are needed to reduce the error calculated in part c) by a factor of 3?
- e) Suppose the original experiment is repeated, again by measuring the resistance 6 times. What is the probability of finding a new result within the error limits calculated in part c)?

Please turn over for exercise 5.

x	$y \pm \Delta y$		
1.00	10 ± 2		
2.00	22 ± 2		
3.00	32 ± 2		
4.00	40 ± 2		

Exercise 5 (11 points)

A series of 4 observations is given in the table above. The error in x is negligible. A straight line y = ax + b is fitted to these observations. The following formulae are given:

$$a = \frac{N\sum x_i y_i - \sum x_i \sum y_i}{N\sum x_i^2 - (\sum x_i)^2}, \qquad b = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{N\sum x_i^2 - (\sum x_i)^2},$$
$$(\Delta a)^2 = \left(\frac{1}{\sum x_i^2 - N\overline{x}^2}\right) \frac{\sum r_i^2}{N - 2},$$
$$(\Delta b)^2 = \left(\frac{1}{N} + \frac{\overline{x}^2}{\sum x_i^2 - N\overline{x}^2}\right) \frac{\sum r_i^2}{N - 2}.$$

- a) Calculate the best estimate for a and b using the method of least squares.
- b) Calculate the errors in a and b.
- c) The student who has carried out the experiment wants to use the chi-square test to check whether the linear fit is acceptable. Calculate χ^2 .
- d) Suppose the 10% 90% probability level is chosen. Using the table below, indicate whether the linear fit is acceptable or not.
- e) Now assume $\Delta y = 0.5$ for all observations. Indicate whether the linear fit is acceptable or not for this case of smaller Δy .

F =	0.01	0.10	0.50	0.90	0.99
ν					
1	0.000	0.016	0.455	2.706	6.635
2	0.020	0.211	1.386	4.605	9.210
3	0.115	0.584	2.366	6.251	11.35
4	0.297	1.064	3.357	7.779	13.28
5	0.554	1.610	4.351	$\begin{array}{c} 2.706 \\ 4.605 \\ 6.251 \\ 7.779 \\ 9.236 \end{array}$	15.09

Table 1: Cumulative χ^2 distribution $F(\chi^2|\nu)$.

Exam grade = (total of points) / 4 + 1.25